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Presentation Overview

• NETL Overview and budget
• Program Drivers
• Goals
• Status of Hydrogen Turbine Projects

– Technology issues

• Summary 
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National Energy Technology Laboratory

•Only DOE national lab dedicated to fossil energy 
•One lab, five locations, one management structure
•1,200 Federal and support-contractor employees
•Research spans fundamental science                              
to technology demonstrations

West VirginiaPennsylvaniaHouston

Alaska

Oregon
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M. Lakatos, 08/12/2008
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Fossil Energy Stimulus Summary
Implemented in FY 2009

Funding Amount

Fossil Energy ($ in Thousands)

Fossil Energy Research and Development $1,000,000

Clean Coal Power Initiative – Round 3 FOA

Industrial Carbon Capture Solicitation

Geologic Formation Site Characterization (RCSP)

Geologic Sequestration Training & Research

Program Direction

$800,000

$1,520,000

$50,000

$20,000

$10,000

Total, Fossil Energy $3,400,000
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FE Advanced Turbine Budget / Projects
FY 09 Budget $28M

• Hydrogen Turbines ($16,177 k)
– Adv. H2 GT Development (GE)
– Adv. H2 GT (Siemens)
– Catalytic Comb. for H2 (PCI)
– Micro-mixing for H2  (Parker)

• Oxy-fuel turbine ($3,227 k)
– Oxy-Fuel Combustor (CES)
– Oxy-fuel Turbine (Siemens) 

• Advanced Research ($8,597 k)
– UTSR (Various Universities)
– Systems Studies (NETL)
– Combustion & Materials (NETL)
– HX Analysis (Ames Lab)
– H2 combustion (LBNL)
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Technology Area/Budget Line Funding ($000's)

Key Activity /Component 
FY 2008 (3)

Enacted 
FY2009 (2)

Enacted
FY2010 

CBR

1.0 Advanced Turbines (1,4) 25,000 28,000 31,000
1.1 H2 turbines (59%) 15,895 16,177 TBD

1.2 Ox-fuel turbines (11%) 1,816 3,227 TBD

1.3 Adv turbine R&D (31%) 7,288 8,597 TBD

Total 25,000 28,000 31,000

FE Advanced Turbine
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Advanced Turbine 
Program Drivers
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United States

World
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5%

Renewables
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Energy Demand 
Today

U.S. data from EIA, Annual Energy Outlook 2009 Early Release, years 2008 and 2030; World data from IEA, World Energy Outlook 2008, years 2006 and 2030
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Coal Remains a Dominate Source as Demand Grows 
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U.S. has a 250 Year Supply of Coal
at Current Demand Levels!

Coal Provides Nearly Half of U.S. Electricity

U.S. Fossil Fuel 
Reserves / Production Ratio
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Sources: BP Statistical Review, June 2004, - for coal reserves data – World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data 
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Annual U.S. Air Emission Trends and 
Projections

Coal-Fired Power Generation Emissions Dramatically 
Reduced
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Integrated Gasification Combined Cycle (IGCC)
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Environmental Performance - IGCC Vs PC 
IGCC is significantly Cleaner

Reference: Wisconsin Dept. of Natural Resources, air pollution control operation permit 03-RV-166,
Elm Road Generating Station, issued January 14, 2004 Table 1, page 3 (Pitt # 8 coal)

Total Reduction (Tons)

58.1%90.2%97.8%66.7%71.8%24.9%82.2%Percent Reduction
27623822.500.022,8444632,605

199260.500.011,1171,396564
Integrated Gasification 

Combined Cycle

475264230.033,9611,8593,169
Super Critical 

Pulverized Coal Plant

Particulates 
(as PM10)

Sulfuric 
Acid Mist

Fluorides 
(as HF)

Mercury 
(Hg)

Sulfur 
dioxide 
(SO2)

Nitrogen 
Oxides 
(NOx)

Carbon 
Monoxide 

(CO)

Tons of Emissions from Comparable 600 MW 
Coal Based Power Plants



16

U.S. CO2 Emissions by Fuel and Use
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Historical Carbon Emissions with Two
Potential Pathways for the Future
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Stabilization Wedges
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Potential Wedge Option
•Efficient vehicles 

•Efficient buildings 

•Efficient base load                                                                         
coal plants 

•Base load coal           
w/CCS 

•Wind power for coal 

•PV power for coal

Level of Effort
•Increase MPG from 30 to 60 for       2 
billion cars
•Reduce emissions by ¼ in all  
buildings / appliances by 2054
•Produce twice today’s coal power at 
60% vs. 40% efficiency                         
(32 % today’s average)
•Introduce CCS at 800 GW of coal 
plants (compared to 1060 GW existing 
coal)
•Add 2 M 1-MW peak windmills      (50 
times current capacity)
•Add 2000 GW peak                       (700 
times current capacity)

Potential Stabilization Wedges
Options to reduce carbon emissions by 25 GtC over 

50 yrs.(1)

Ref (1):Pacala and Socolow, Science, Vol. 305, August 13, 2004
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Technological Carbon Management Options

Improve
Efficiency

Sequester
Carbon

• Renewables
• Nuclear
• Fuel Switching

• Demand Side
• Supply Side

• Capture & Store
• Enhance Natural 

Processes

Reduce Carbon
Intensity

All options needed to:
• Supply energy demand
• Address environmental       

objectives
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DOE Office of Fossil Energy (FE)
Advanced Power Systems Goals

• 2010: 
− 45-50% Efficiency (HHV)
− 99% SO2 removal
− NOx< 0.01 lb/MM Btu
− 90% Hg removal
− $1600 / kW ($2007)

• 2012: - Carbon Capture
− 90% CO2 capture
− <10% COE increase for IGCC
− <35 % COE increase in PC

• 2015
− Multi-product capability
− 60% efficiency (w/o CCS)

DOE FE programs:
• Advanced Turbines
• Gasification
• Advanced Research
• Fuel Cells
• Innovations for Existing 

Plants
• Sequestration
• Fuels from Coal
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Turbine Program Contribution to APS Goals
Predicted in FY 2006

• 2010 Contribution to Goals
– Efficiency: 2 – 3 % pts. improvement in CC
– Cost: ~ 20 %  reduction in CC capital cost 
– Emissions: 2 ppm NOx (@15 % O2) in GT exhaust

• 2012 Contribution to Goals
– Maintain 2010 performance with hydrogen fuels.

• 2015 Contribution to Goals
– Efficiency

• H2 turbine w/ 3 – 5 % pts. improvement in CC 
– Emissions

• H2 Turbine  IGCC with 2 ppm NOx (@15 % O2) 
• Oxy-fuel turbine near zero emissions 
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R&D Areas Advance Turbine Performance

Cost
Power

Efficiency
Emissions

Combustion

Aerodynamics & 
Heat Transfer

System Design

Materials
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Physical Properties of Hydrogen and 
Impact on Combustion
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Density (kg/m3)
Hydrogen Has a Very Low Density

H2
(0.085)

CO
(1.184)

CH4
(0.65)

At 1.013 bar and 15 C



26

Energy Density (kJ/m3)
Hydrogen Has a Low Energy Density

H2
(10,050)

CO
(11,958)

CH4
(32,560)

At 1 atm. 25 C
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Flammability Limits In Air
Hydrogen Has Broad Flammability Limits

H2

CO

CH4

4 to 75

5 to 15

12 to 75

0 25 50 75 100
% in Air
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Laminar Flame Speeds
Hydrogen Burns Ten Times as Fast as Methane

H2

CO

CH4

meter/second
0.3

0.4 1 2 3

Ref: NACA Report 1300
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Diffusivity in Air 
In Air Hydrogen Diffuses Over Three Times as Fast

Ref: Vargaftik, N. B., Vinogradov, Y. K., and Yargin, V. S. (1996) Handbook of 
Physical Properties of  Liquids and Gases, 3rd Ed., Begell House, Inc., New York.

CO

CH4

H2

0.2 0.5 10.7
cm2/sec
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Minimum Ignition Energy (mJ)

• CO ………….. 0.3 (2)

• CH4…………. 0.3 (1)

• H2…………… 0.017 (1)

• Coffee…….... 160 (1)

References
1. Babrauskak, V. (2003) Ignition Handbook, Fire Science Publishers, Issaquah WA
2. Berufsgenossenschaften, Richtlinien Statische Elektrizität, ZH1/200 (1980), Bonn
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Auto Ignition Temperature

CO 630oC

595oC

560oC

CH4

H2

~ Compressor Discharge 315oCTemperature
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H2 Properties Impacts Turbine Combustion 

• Low density of hydrogen (7.6 X< natural gas (NG)) 
– Reduces momentum of injected fuel to promote mixing

• Low energy density (3.2 x< NG) 
• H2 has broad flammability limits 4 – 75  % versus 5 –

15 % for NG in air
– H2 more likely to combust in undesirable locations

• Laminar flame speed of H2 ten times faster than NG
– Promoting flash back and flame holding

• H2 diffuses three times as fast as NG in air
• Minimum ignition energy 17 times lower than NG



33

Kinetic Models vs. Experiments 
Autoignition of Hydrogen Fuels

Ref: Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition 
and Stability, T. Lieuwen et al, J.Eng. GT Power, Jan 2008, Vol 130 
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Turbine Inlet Temperature Key to 
Efficiency
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- More Power!

Reduced Cooling Flow
- Better Efficiency!
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Status of H2 Turbine Projects
GE and Siemens

• Combustion
– Conducted full can testing of generation 1 concepts (GE)

• 100% syngas w/ single digit NOx at F-class conditions 
• Promising operability NG, 100% H2, and H2-N2 fuels

– Adv. nozzle designs released for manufacturing (SE)
• Turbine

– Completed aero/mech testing of latter stage bucket (GE)
– Row 1 blade core w/  adv. cooling produced (SE)

• Materials
– Initial tests on metallic and TBC with significant increases 

in corrosion resistance & TBC spallation life (GE)
– TBC tests  carried out on a Laser rig for advanced high 

temperature low conductivity coatings (SE)
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Nominal IGCC System

Gasifier
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Summary of Changes When Capturing CO2 
IGCC to IGCC with carbon capture

• Higher capital cost (31 %) and COE (27 %)

• Auxiliary power increases by 45 % (59 MW)

• 46 % increase in auxiliary power for CO2 
compression (27.4 MW)

• Steam use degrades steam turbine output        
by 8 % (24 MW)

• Net power reduced by 85 MW

• Net plant efficiency reduced by 5.7 % points

• 2 % increase in coal consumption (~ 117 TPD)
Reference: Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal 

and Natural Gas to Electricity, J. Klara, May 2007, Final Report DOE NETL
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Impact of CCS on COE
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Summary
• Coal is projected to be a major energy 

resource for the U.S. and the world
• Effective CO2 management will require a 

multi facetted approach 
• For new coal plants IGCC is the best 

approach for CO2 capture
– CO2 capture and geologic sequestration is a 

viable option for reducing carbon intensity
– IGCC creates new pathways for energy 

production, lower emissions and higher efficiency
• DOE’s Turbine program is addressing  

opportunities for IGCC with CO2 capture 
– Excellent progress in efficiency, power output 

materials and combustion with reduced emissions
• On track to meet program goals
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Questions and Discussion
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